How to make your own ROM-Drive
for T1000

The following document is extracted from my own experience of
making a new

ROM-drive for my Toshiba 1000 (with DOS 3.3). I've not tried this on
any

other models.

For those who remember my post last year containing software to
facilitate

making ROM-drives, I've had some reports of trouble with it. Due to the
demands of my regular work and the weak response to last year's post,
I've

not worked on it any more.

Nevertheless, here is the 'how-to' manual. | hope that it helps some of
you
who are still struggling with DOS 2.11 on a T1000.

| have also made ROM-drives for those who don't want or can't do it
themselves. E-mail me for more details.

EPROM "ROM-DRIVE" for TOSHIBA 1000

The Toshiba 1000's ROM-DRIVE (drive C:) is an EPROM organized like
a



3.5" double density floppy disk. The main difference between the
diskette format and EPROM format is that:

i) the EPROM contains a 1K header at the beginning

ii) the EPROM has a maximum file capacity of 504K (512K minus 1K
header and standard 7K of directory and FATs), while a 3.5"

DD floppy has 713K.

The T1000 comes with a 256K EPROM loaded with DOS 2.11 and some
utilities, even though a 512K EPROM can be accomodated. Either is a
32 pin wide DIP IC which can be easily located because it is the only
one of this kind on the circuit board. The recommended 512K EPROM is
a type 574000 4Meg (512Kx8) type with 150ns access time, while the
256K is a type 572000.

Below, the organization of a 3.5" DD floppy is compared to a 512K
EPROM:

EPROM Floppy Disk

Addr (Hex) Addr (Hex)

O Header O Boot Sector

400 Boot Sector 200 1st FAT

600 1st FAT 800 2nd FAT

CO0O0 2nd FAT EOO Directory

1200 Directory 1C00 to B3FFF Files - 713K max.
2000 FILES - 503K max.

- 7FFFF Dummy File - 1K min.

The 512K EPROM contents from 400h to 7FFFF (a 511K block) are
essentially directly copied from location O to 7FBFF (to end of

cluster 1F9) of a 3.5" DD floppy. (For 256K EPROMSs, the 255K block
from location 400h is copied from disk location O to 3FBFF). A header



must then be inserted into the first 1K of the EPROM. Also, the FAT
must be changed and a dummy file made to make the 512K (or 256K)
EPROM

look like a 713K 3.5" double density diskette.

Note that at least 1K of space must be left at the end for a "dummy"
file. Hence, up to 503K of files can be put on a 512K PROM (locations
2000h to 7BFFF), and up to 247K on a 256K PROM (2000h to 3BFFF).

Header File

The first three bytes of the 1K header file denote the EPROM size

in reverse order hex. Therefore the first three bytes on a 512K or
256K EPROM are respectively "00 00 80" or "00 00 40". The function
of

locations 3 thru 8 are unknown, but the following values have been
taken from existing EPROMs:

0102 03 00 05 14 (512K)

0102 03 010215 (256K)

Locations 9 and 10 are the last two bytes of the EPROM checksum
(with location 10 the LSB), with the checksum taken from location 400h
to the end (i.e. all but the 1K header file). Therefore if the

checksum is "XXXXXXYYZZ" in hexadecimal, locations 9 and 10 will
respectively contain YY and ZZ.

It appears that the rest of the header at least from location 16

(10 hex) can contain anything at all, including comments,
documentation, etc.

Dummy File
To make the EPROM look like a full double density disk, a
directory entry for a dummy file must be specified with a size which



will completely fill a double density disk. If, therefore, a 512K

EPROM has 503K of files loaded, a directory entry must be created
assigning a file, say of name "DUMMY", 210K of space to give the
appearance that a full 713K of files are present. The attributes of

this file are set HIDDEN, READ-ONLY and SYSTEM to make it at least
invisible, as it has no purpose to the user.

FAT Modification:

Because the dummy file is assigned space not physically available

on the EPROM, its FAT entries are truncated at the last real available
cluster on the EPROM. This is cluster 1F9 (for 512K PROMSs) or F9
(256K). Doing this will cause a "lost chain" error on performing a
CHKDSK, but will otherwise let the dummy file's size entry convince
the operating system that the ROM-DRIVE is full while foiling attempts
to read nonexistent EPROM locations.

PROCEDURE

The following outlines a practical procedure for creating the binary
file to be burned into EPROM. Because the EPROM format is so close to
a diskette, the starting point is to prepare a diskette:

1) Disk Preparation:

Format a 3.5" double density (720K) working floppy diskette

USING THE SAME OPERATING SYSTEM you want to implement on the
PROM.

Install the operating system. Change the diskette label to that you
wish for the ROM-DISK label.

Installation of the operationg system is best done by making a

working copy of an appropriate boot diskette for your laptop using the
DISKCOPY command, and erasing all visible files except



COMMAND.COM on
the working copy.

2) Determine the space left on the working diskette by performing a
directory list (DIR). Calculate the remaining space for other files

on the 512K (or 256K) PROM by subtracting 215040 (or 477184) from
the

space left on diskette. This number is the "free PROM space". The
object is to determine how many more files can be written to diskette
until 215040 (210K) (or 477184 = 466K) bytes are left on diskette.

3) Load all desired files for the PROM into an empty diskette or hard
drive directory. Use this directory ONLY for files which are to go on
PROM. You will probably have far more than the PROM can
accommodate.

Use a utility like SIZE (PC Magazine utility) to determine how much
space the files will take on diskette (Note: File storage is quantized

into 1K blocks on diskette, so you can't go by the file sizes as

reported in a DIR).

Delete and add files to the dedicated directory until they

occupy or nearly occupy the "free PROM space" determined in step 2.
Make sure that you include no files or programs that modify or
reconfigure themselves (as the PROM is read-only). Make sure that any
program which refers to files which are modified (such as
configuration files) be set if possible to look for such files outside

of the ROM-DRIVE directory.

Alternately, one can add and drop files directly on the diskette

until there is at least 215040 bytes (or 477184 for case of 256K PROM)
left. In this case, however, once the files to be included are

decided on, the disk must be reformatted and the chosen files loaded



on, so that the diskette is loaded contiguously from the first
sectors.

4) After, and ONLY after, the dedicated directory is loaded with

files with the proper total size, copy all files to the working

diskette prepared above. There should be 215040 (477184) bytes or
more left on the diskette. After this is done, no changes are to be
made to the diskette, as any changes, even if they do not affect the
number of bytes, may "fragment" the diskette (i.e. all files must be
contiguously stored in the first available diskette sectors).

Write protect the diskette by slipping open the write protect

tab. Boot the laptop from the diskette and ensure that all programs
and utilities run without problems.

If any changes need to made at this point, erase all visible

files on the diskette except visible system files (e.g. COMMAND.COM)
and start again at step 3.

5) Once the diskette is confirmed to work, a dummy file must be made
just big enough to fill the remainder of the diskette. Any file with

size within 1K of the remaining diskette space will do the job. The

file can contain anything.

DEBUG may be used to create a file of arbitrary size. If the

desired file size in bytes, expressed in hexadecimal, is "AAAABBBB",
then a file "dummy" (containing only zeros) can be produced with the
following DEBUG commands:

n dummy

f 0 fO0O0 ff

rcx

BBBB

rbx



AAAA
w0

q

For example, AAAA=0003 and BBBB=4800 will make a file of size
215040

bytes.

Load the dummy file onto the diskette. The name assigned is
arbitrary.

6) Change the attributes of the dummy file on diskette to READ-ONLY,
SYSTEM and HIDDEN using a disk editor or by rebooting into DOS 5
and

using the DOS 5 ATTRIB command:

attrib +h +s +r dummy

Use the DEBUG script of the Appendix to read the diskette sectors to
binary files. This is done by entering the commands of the Appendix
manually in DEBUG, or by loading the commands into a text file, say
'script’, and typing:

debug < script

7) For 512K EPROMSs, change the FAT entry for cluster 1F9 to end-of-
file by changing location 4F6 of file ROMO to "FF" and the last four
bits of 4F5 to "F" (leaving the first four untouched). Do the same to
locations AF6 and AF5.

For 256K EPROMSs, change terminate the FAT sequence at cluster F9
by changing locations 376h and 976h to "FF" and the last four bits of
375h and 975h to "F".

8) Concatenate the binary files into one binary file (here called
'prombody'):



copy /b romO + rom1 + ... romN prombody

where 'romN' is 'rom3' for 256K EPROMSs or 'rom7' for 512K. This file
should be of size 511K for 512K EPROMS and 255K for 256K EPROMs.

The

files romO, etc. can be discarded at this point. Calculate a checksum

by adding all bytes in file 'prombody".

9) Prepare a 1K header file with the first 11 bytes as described
above. Burn the header file into the first 1K of the EPROM (or just
the first 11 bytes, as the rest of the header isn't important). Burn
the EPROM remainder with 'prombody' from step 8.

INSTALLATION (Jumper Settings)

Looking from the front, jumpers J17, J18 and J19 located near the
PROM
socket appear thus:

000000000
123123123
JP17 JP18 JP19

For 256K PROM, short 2,3 of JP17, 1,2 of JP18 and 1,2 of JP19.
For 512K PROM, short 1,2 of JP17, 1,2 of JP18 and 1,2 of JP19.

++++++

++++++H
Appendix - DEBUG SCRIPTS
1) Extraction of EPROM Data from Floppy Disk B: (512K)

n romO



101080
rcx

0

rbx

1

w O

n rom1
10180 80
rcx

0

rbx

1

w O

n rom2

| 01100 80
rcx

0

rbx

1

w O
nrom3
101180 80
rcx

0

rbx

1

w O
nrom4
101200 80
rcx



0

rbx

1

w O

n romb
101280 80
rcx

0

rbx

1

w O

n rom6

| 01300 80
rcx

0

rbx

1

w O

n rom/
10138078
rcx

0

rbx

1

w O

q
2) Extraction of EPROM Data from Floppy Disk B: (256K)

n romQO
101080



rcx

0

rbx

1

w O

n rom1
1018080
rcx

0

rbx

1

w O

n rom2

| 01100 80
rcx

0

rbx

1

w O
nrom3
10118078
rcx

0

rbx

1

w O

q



